\qquad
Precalculus
Purpose: This problem set defines domain and range for functions and provides opportunities to practice in the context of piecewise functions.

Definitions: Let $f(x)$ be any function. The domain of f is the set of possible input values. The range of f is the set of possible output values.

Sometimes, the domain and range will be given to you and other times you'll have to determine a reasonable domain. Generally, we will want to express domain and range using interval notation, set builder notation, or inequalities.

1. Write the following subset of the real numbers, \mathbb{R}, in interval notation, using inequalities, and in set builder notation. Also sketch the solution set on a number line.

All numbers smaller than or equal to 2 and numbers strictly between -1 and 3 .
2. The list of ordered pairs below represents a function. What is the domain of this function?

$$
\{(2,4),(-1,3),(0,5),(\text { red }, 7)\}
$$

3. The graph of the function $y=g(x)$ consists of line segments and semicircles of radius 2 connecting the points $(-6,0),(-4,4),(0,4),(4,4)$, and $(6,0)$.

(a) What is the domain of $g(x)$? What is the range of $g(x)$?
(b) Where is the function increasing? Where is the function decreasing?
(c) If we restrict the function to the smaller domain $x \in[-5,0]$, what is the range?
4. Sketch the graph of the function below on the coordinate axes provided on the right.

$$
h(x)= \begin{cases}x+3 & \text { if } x \leq-2 \\ -1 & \text { if }-2<x<1 \\ x & \text { if } x \geq 1\end{cases}
$$

5. What is the range of $h(x)$?
6. Choose any interval that is contained in the range of $h(x)$. Find, if possible, a restricted domain for $h(x)$ so that the range of $h(x)$ is the interval you chose. If it isn't possible, explain why not.

Reflection Questions:

1. Restate the definitions of domain and range.
2. Given a graph of a function, how will you determine the domain and range?
3. Given a formula for a function, what might you look for to find the domain?
